skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hou, Wentao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Routable PCIe has become the predominant cluster interconnect to build emerging composable infrastructures. Empowered by PCIe non-transparent bridge devices, PCIe transactions can traverse multiple switching domains, enabling a server to elastically integrate a number of remote PCIe devices as local ones. However, it is unclear how to move data or perform communication efficiently over the routable PCIe fabric without understanding its capabilities and limitations. This paper presents the design and implementation of rPCIeBench, a software-hardware co-designed benchmarking framework to systematically characterize the routable PCIe fabric. rPCIeBench provides flexible data communication primitives, exposes end-to-end PCIe transaction observability, and enables reconfigurable experiment deployment. Using rPCIeBench, we first analyze the communication characteristics of a routable PCIe path, quantify its performance tax, and compare it with the local PCIe link. We then use it to dissect in-fabric traffic orchestration behaviors and draw three interesting findings: approximate max-min bandwidth partition, fast end-to-end bandwidth synchronization, and interference-free among orthogonal data paths. Finally, we encode gathered characterization insights as traffic orchestration rules and develop an edge constraints relaxing algorithm to estimate PCIe flow transmission performance over a shared fabric. We validate its accuracy and demonstrate its potential to provide an optimization guide to design efficient flow schedulers. 
    more » « less
  2. Abstract Aqueous trivalent metal batteries represent a compelling candidate for energy storage due to the intriguing three‐electron transfer reaction and the distinct properties of trivalent cations. However, little research progress has been achieved with trivalent batteries due to the inappropriate redox potentials and drastic ion hydrolysis side reactions. Herein, the appealing yet underrepresented trivalent indium is selected as an advanced metal choice and the crucial effect of substrate on its plating mechanism is revealed. When copper foil is used, an indiophilic indium‐copper alloy interface can be formed in situ upon plating, exhibiting favorable binding energies and low diffusion energy barriers for indium atoms. Consequently, a planar, smooth, and dense indium metal layer is uniformly deposited on the copper substrate, leading to outstanding plating efficiency (99.8–99.9%) and an exceedingly long lifespan (6.4–7.4 months). The plated indium anode is further paired with a high‐mass‐loading Prussian blue cathode (2 mAh cm−2), and the full cell (negative/positive electrode capacity, N/P = 2.5) delivers an excellent cycling life of 1000 cycles with 72% retention. This work represents a significant advancement in the development of high‐performance trivalent metal batteries. 
    more » « less